Honda Motorcycle and Scooter India Pvt Ltd, Narsapura

CII National Award for Excellence in Energy Management 2022

Presented by

- 1. Sunil Kumar Pandita
- 2. Cheruvu Sankar
- 3. Sriram Karikkat

- Div. Head Plant Engineering
- Sect. Head Utility Electrical
- Sect. Head Environment

Table of Contents

Contents	Slides	Time
Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	3 min
Major Improvements, Review Mechanism, Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

HONDA MOTOR COMPANY, GLOBAL OPERATIONS

Mr. Soichiro Honda (1906 – 1992)

Honda Motor Co Was Founded In 1948

Honda operates in 150 countries
Total 406 group companies globally

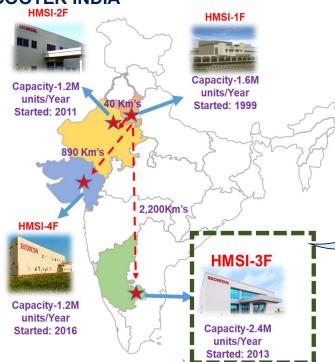
Automobiles

Motorcycles

Power Products

Marine Engines

Honda jet


Aero Engine

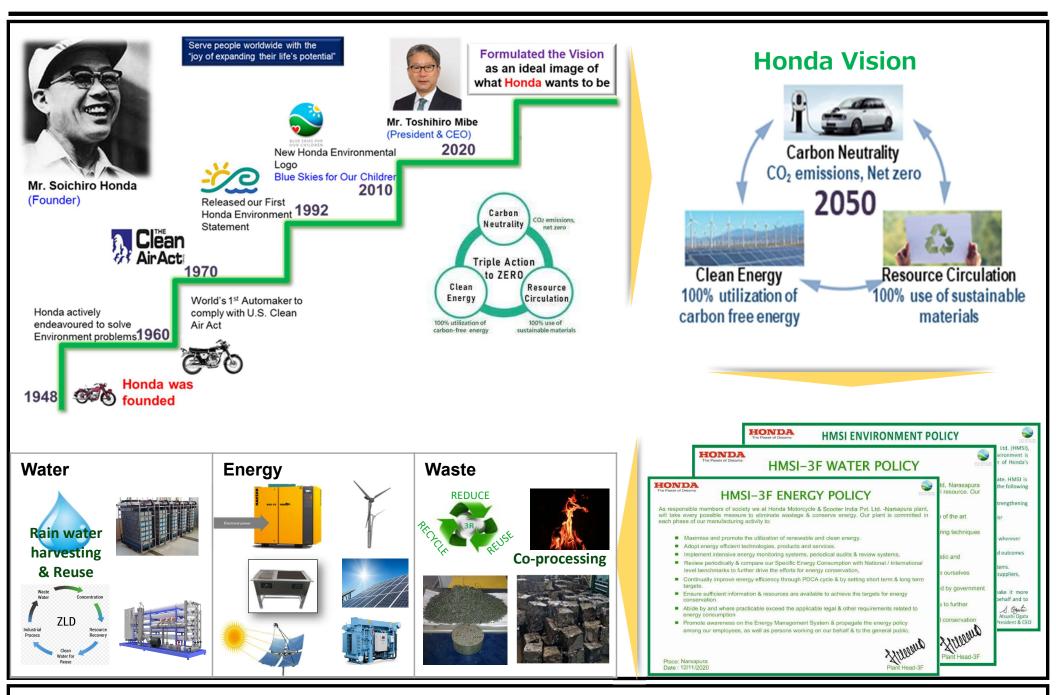
HONDA MOTORCYCLE AND SCOOTER INDIA

Total 4 Factories in India
Capacity 5.5 mil units/year
Associates 24,000 people
Activa Sales 1.7 mil Units/year

Land Area : 4,81,757 m²
Built up Area : 2,65,706 m²
Manpower : 7041

Capacity : **2.4 Million**

Models : Activa, SP125, Shine SP, Livo, Dio



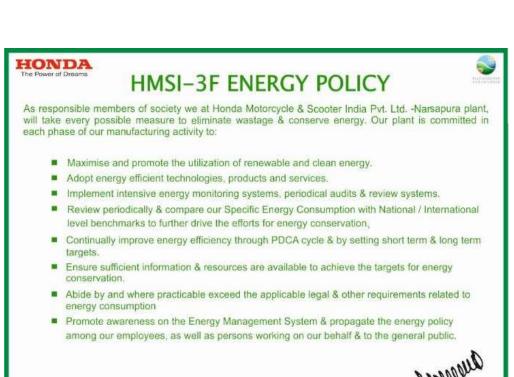
- Won BEE National Energy Conservation Award 2020
- Won CII National Energy Leader Award in 2020 and 2021
 - Won CII National Award for Excellence in Energy Management in 2018, 2019, 2020 and 2021.

Honda Narsapura is located in Kolar, Karnataka.

It is Honda's largest factory globally with a capacity of 2.4 Million vehicles per year

The Triple Action to Zero propels our Environment initiatives at every stage of lifecycle so as to achieve a liveable & sustainable society

Key policy highlights

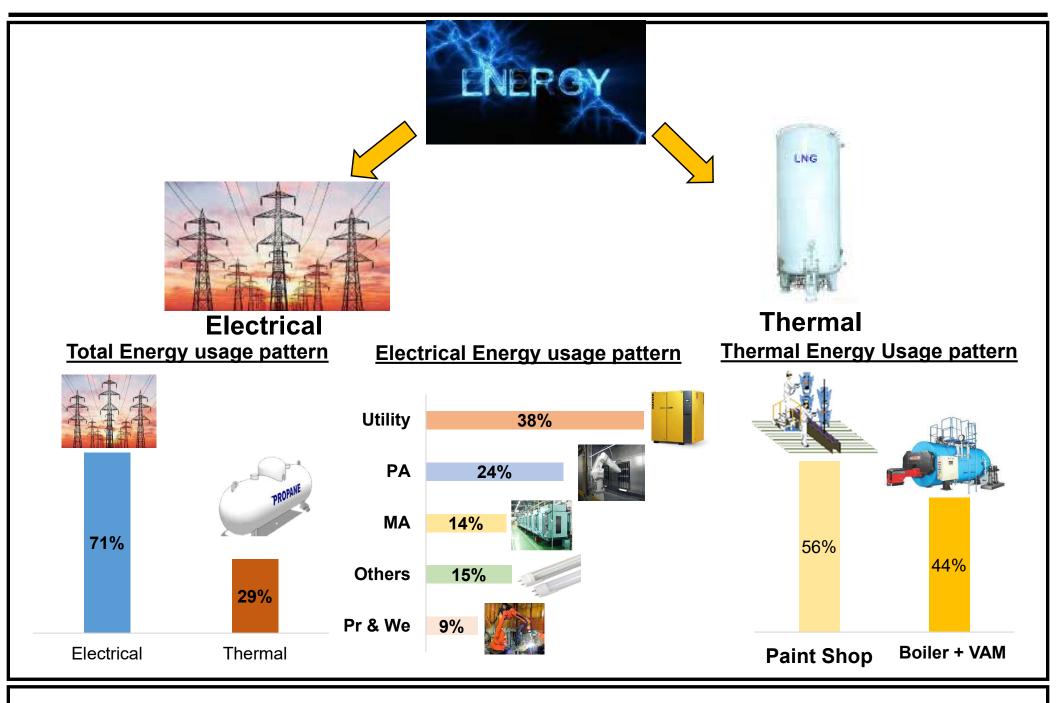


Use of renewable energy

Place: Narsapura Date: 12/11/2020

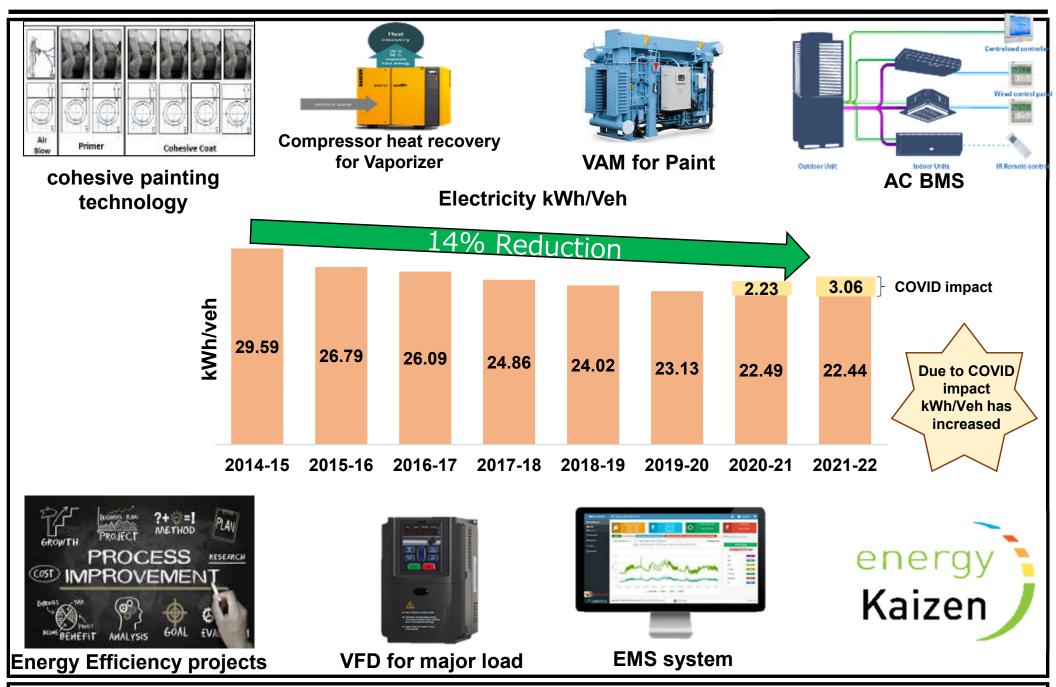
PDCA Approach

Use of Energy saving equipment's

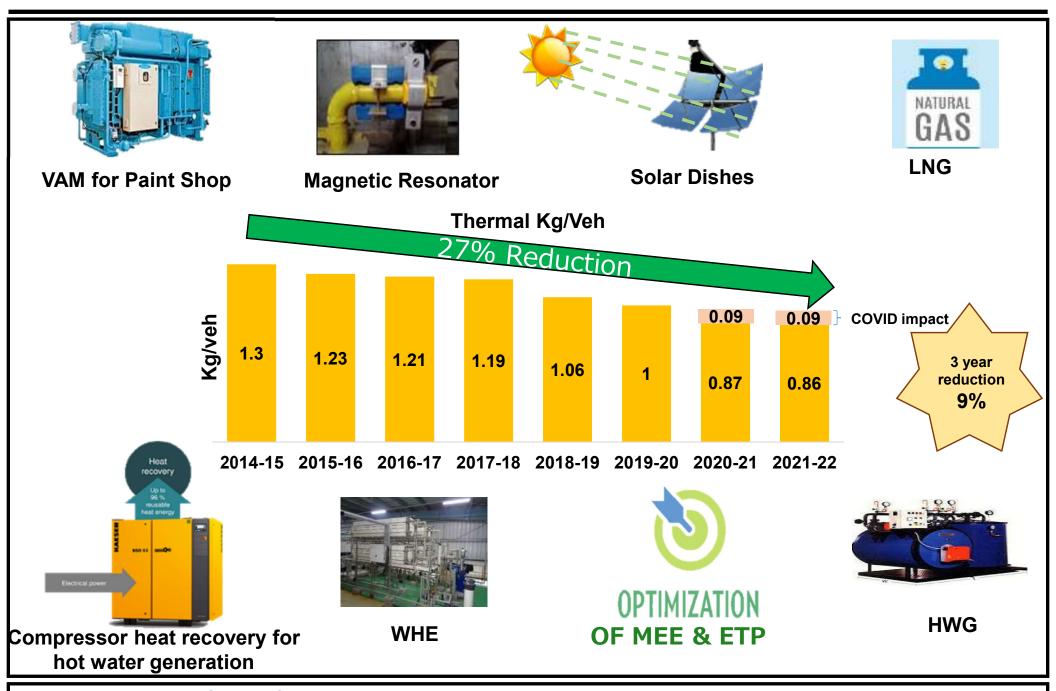


Use of monitoring systems

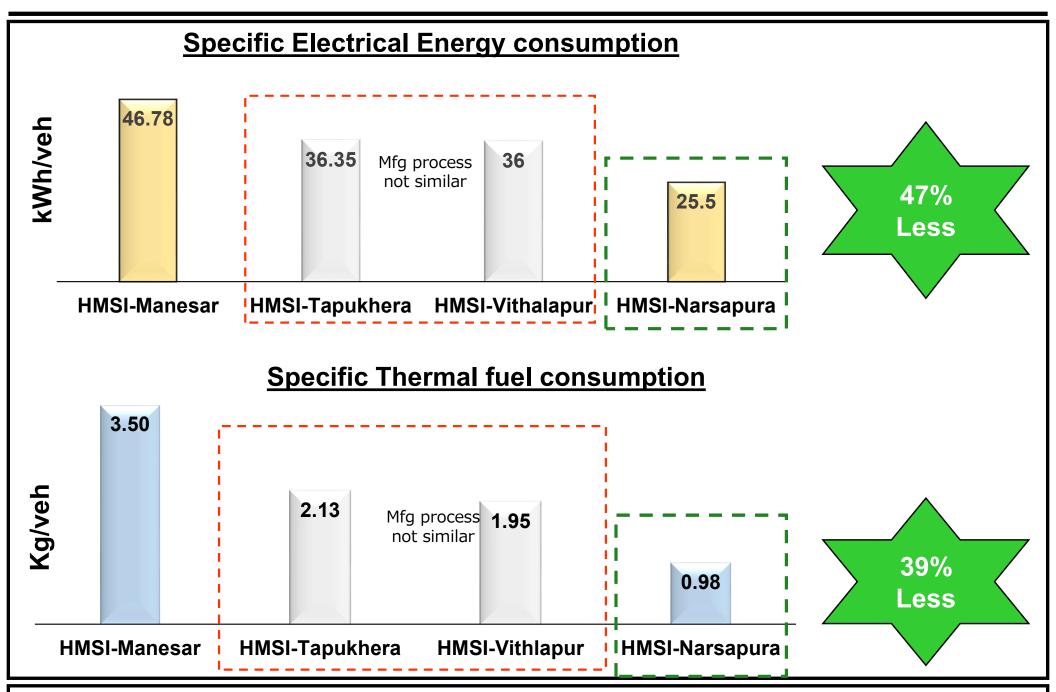
PDCA & bench marking is an integral part of our energy policy


Table of Contents

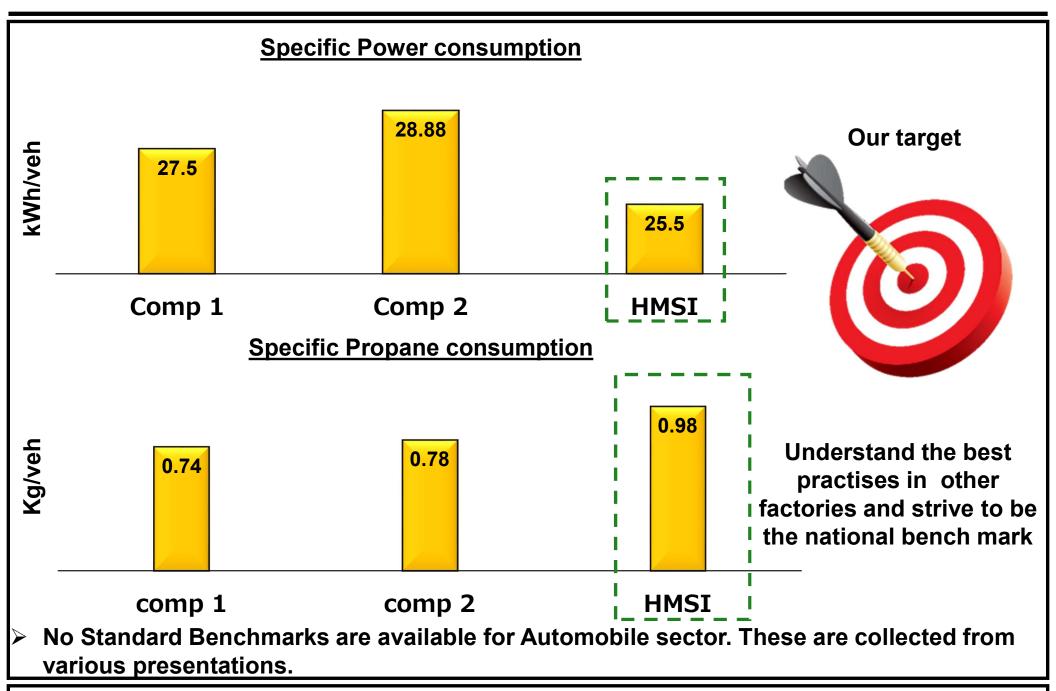
Contents	Slides	Time
Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min


Electricity and propane gas are the major source of energy for our factory

Specific energy consumption-Electricity



Specific Electrical consumption is in reducing trend.


Last three year reduction is 6.58% excluding COVID impact

Specific propane consumption is in reducing trend Last three year reduction is 18.86%

We are the benchmark among all the HMSI factories in India

We are striving towards being the national bench mark

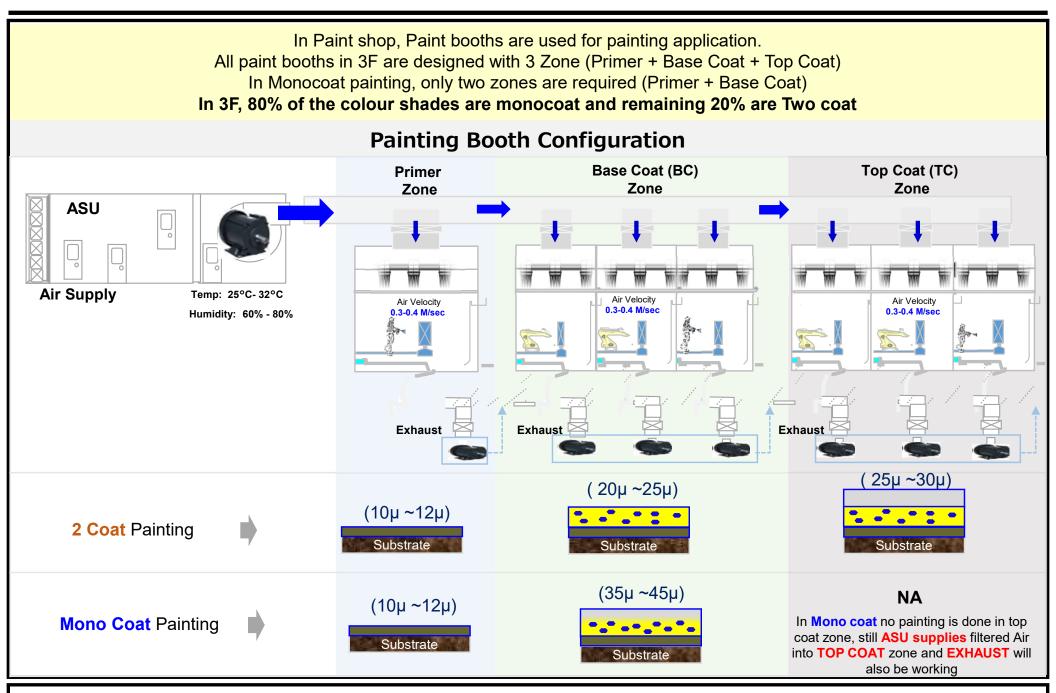
Table of Contents

	Contents	Slides	Time
01	Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
02	Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
03	ENCON Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
04	Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
05	Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
06	GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
07	Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
08	Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

ENCON Projects Without Investment

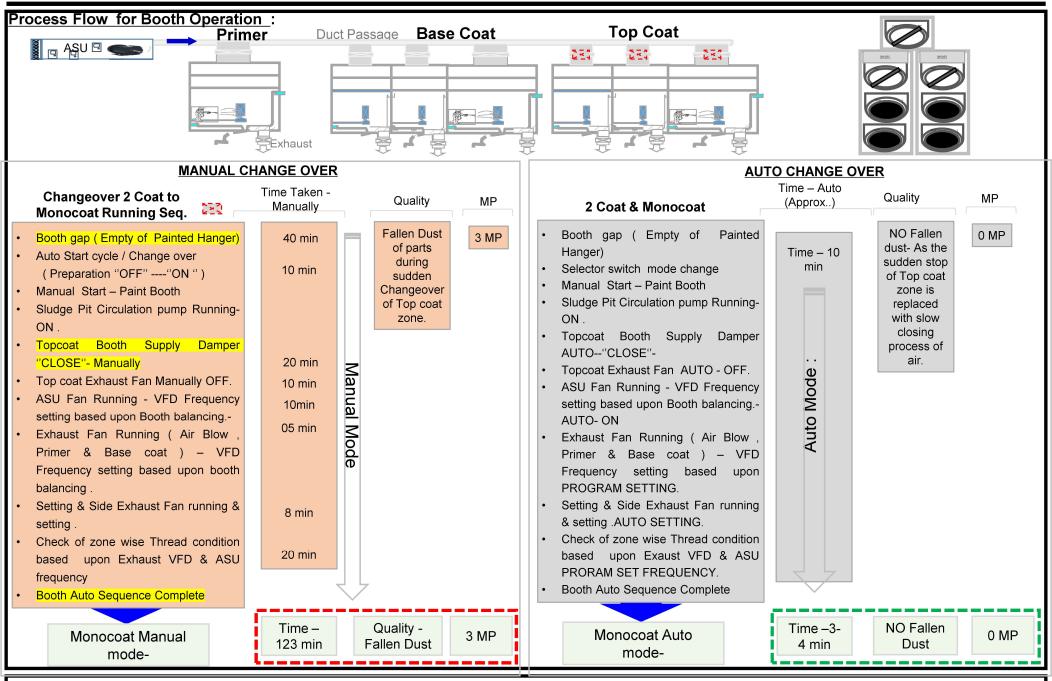
			Environmental bene	nental benefits Total Invest		Monetary			
S. No.	Parameter	Projects implemented	Savings in	Quantity	made (Rs. In lakhs)	Benefits (in lakhs)	Intangible benefits		
1	DE	Thind name a lan name name name	Renewable energy, kWh	44000000	0	1078	Through third party solar power procurement by wheeling, power requirement is met 24 x 7		
	RE	Third party solar power procurement	GHG emission, tons CO2	35772	- 0	1076	irrespective of seasonal variation as state grid back up is always available.		
2	EE	Propane saving through heat free	Thermal energy, Mill Kcal	290	0	144	Reduced water, energy and equipment		
2	EE	treatment technology	GHG emission, tons CO2	724		144	efficiency losses in heating process. Insulation from market fluctuations in prices of propane		
3	EE	Energy saving through Cohesive	Electrical energy, kWh	1973000	0	123	Reduction in VOC emission		
3		painting technology	GHG emission, tons CO2	1605		123	Reduction in VOC emission		
4	EE	Boiler Pressure reduction from 6 bar	Thermal energy, Mill Kcal	645.3	0	24	Safety improvement with regard to handling of		
4	EE	to 4 bar	GHG emission, tons CO2	1611	-	24	highly dangerous steam		
5	EE	AHU Frequency Optimization	Electrical Energy, kWh	600000	- 0	40	Reduced wear and tear in motors and reduced		
5		And Frequency Optimization	GHG emission, tons CO2	436		U	40	Preventive Maintenance	
6	EE	ACED Pumps & Fans Auto Sequence	Electrical Energy, kWh	3225	0	2.3	Reduced wear and tear in motors and reduced		
6	EE	ON/OFF Operation During empty Mode	GHG emission, tons CO2	2.3		0	2.3	Preventive Maintenance	
7	EE	Elimination of Induction Hardening	Electrical Energy, kWh	2376000	0	0	159	Reduction in downtime and Repair and Maintenance leading to production loss.	
	EE	process	GHG emission, tons CO2	1725	0 139		0 159		Safety risk associated with heating machines has been reduced.
8	EE	Elimination of Zara D Wolding	Electrical Energy, kWh	934615	0	60	Reduction in space and manpower		
0		Elimination of Zero B Welding	GHG emission, tons CO2	698	7 0	60	requirements, reduction in quality issues due to welding, hazard reduction		
9	EE	Energy regeneration from Servo	Electrical Energy, kWh	72900		0	0		Increase in energy recovery and utilization of
9	EE	motors	GHG emission, tons CO2	54.4		5	regenerated energy		
40	DE	Third Dorty Mind Dayson Drawn and	Renewable Energy, kWh	650000	0	F 40	Third Party wind power procured during the		
10	RE	Third Party Wind Power Procurement	GHG Emissions, tons CO2	485.55	0	5.42	monsoon season to compensate the Solar power loss		
		Third Party BEE Certified Energy	Electrical Energy, kWh	1339000			Third Party Energy Audit conducted to check all the high energy intensive		
11	EE	audit conducted	GHG Emissions, ton CO2	966.76	0	92.98	92.98	92.98	equipment efficiency and found out all the equipment are above par
	-	Total	Electrical Energy, kWh	51948740	0	1734.4			
		iulai	GHG Emissions, tons CO2	44080.01		1734.4			

Without Investment, 51.96 Mill kWh, 44080.01 MT of CO₂ and Monetary Savings of 173.44 Mill /Annum have been achieved.

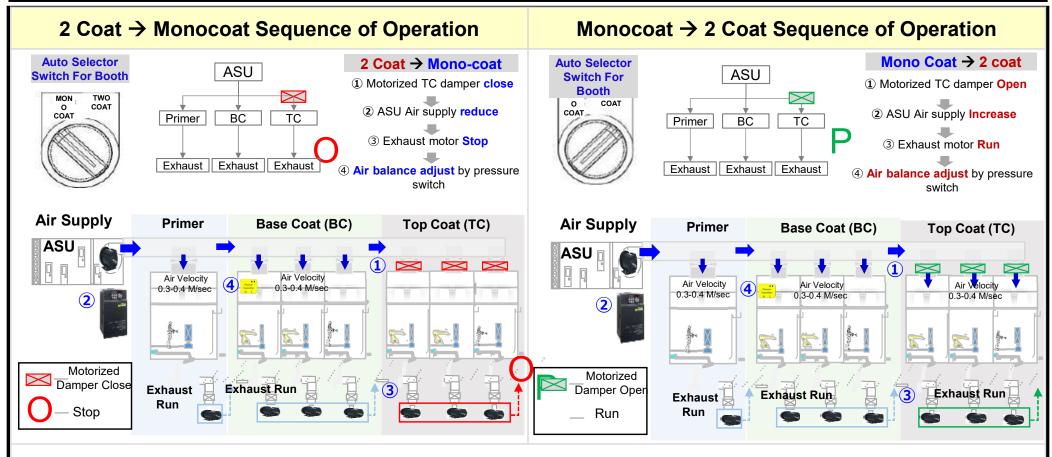

ENCON Projects With Investment

			Environmental bene	efits	Total Investment	Monetary				
S. No.	Parameter	Projects implemented	Savings in	Quantity	made (Rs. In lakhs)	Benefits in lakhs	Intangible benefits			
1	RE	Installation of solar roof top panels of	Renewable energy, kWh	8800000	2870	580				
'	KE	capacity 7MW	GHG emission, tons CO2	8330	2070	560				
2	RE	Installation of 2.5 MW Solar Roof Top	Renewable energy, kWh	2940000	1108	269	Dependency on external agency for power			
	K⊑	Expansion	GHG emission, tons CO2	2123		209	supply reduced			
	D.E.		Renewable Energy, kWh	7500000	1000	40.4				
3	RE	Installation of 2.7 MW Wind turbine	GHG emission, tons CO2	5415	1920	484				
4	DE	Color colution for allidge drains	Thermal energy, Mill Kcal	55000	20	EE	Improvement in patety uset bondling of propose			
4	RE	Solar solution for sludge drying	GHG emission, tons CO2	317	30	55	Improvement in safety wrt handling of propane			
			Electrical energy, kWh	1100000			Compressed air requirement for the entire			
5	EE	Interconnection of compressors through integration of three compressor houses	GHG emission, tons CO2	924	12.39	72	factory has been optimized by reducing the air pressure			
			Electrical energy, kWh 1181250			VAM can result in reduction of usage of ODS				
6	EE	VAM for Paint Shop	Thermal energy, Mill Kcal	2936	490	163	and GHG Potential Refrigerants currently used in chillers. Further, handling of steam has been			
			GHG Emissions, tons CO2	1591			eliminated thus addressing safety risks			
7	EE	Installation of EC Fans	Electrical energy, kWh	222750	- 75	15	Less Maintenance intensive as the technology is			
7	EE		GHG Emissions, tons CO2 162	75			15	electrically controlled		
		Robotic Washing Machine in Machine	Electrical energy, kWh	1117292	00.4	7.5	Quality improvement in machine shop process			
8	EE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75	75	and reduction in market complaints of the product				
		Hat Water Comments of the Delicat Observe	Thermal Energy, Mill Kcal	923	45.0	05.5	·			
9	EE	Hot Water Generator for Paint Shop	GHG Emissions, tons CO2	201	45.6	25.5				
40	FF	Air Druge Optimization	Electrical energy, kWh	970000	28	65				
10	EE	Air Dryer Optimization	GHG Emissions, tons CO2	725	7 20	05				
		PT Short process	Electrical energy, kWh	200000	00	20.0	With the implementation of PT short process,			
11	EE	for ABS Parts	Thermal Energy, Mill Kcal	184.16	28	29.6	720 KL/Annum of Water reduction can also be achieved.			
		Implementation of Auto Booth air	Electrical energy, kWh	870000	404.4					
12	EE	balancing concept for two coat to monocoat	GHG Emissions, tons CO2	632	181.4	55.9				
			Electrical energy, kWh	24901292	6977 45	4004.00				
		Total	GHG Emissions, tons CO2	22010.39	6877.15	1981.98				

With Investment, 24.90 Mill kWh, 22010.39 MT of CO₂ reduction and annual savings of Rs. 198.2 Mill has been achieved


Table of Contents

Contents	Slides	Time
Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min



Due to modification of painting process from two coat to one coat through cohesive painting technology, the ASU and exhaust systems requirement in top coat can now be eliminated.

Auto booth air balancing concept – Situation Analysis

Through implementation of auto damper, the changeover time can be reduced from 123 min to 4 minutes enabling energy conservation in addition to better quality control.

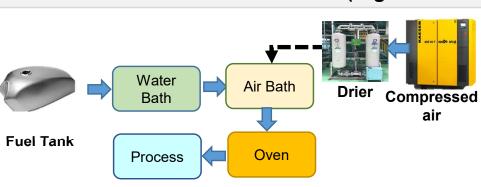
Key project highlights

8,70,000 Kwh of electricity

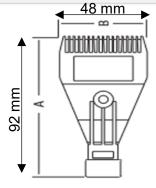
59.3 Lakhs Per Annum

628.14 MT Per Annum

181.4 Lakhs


18 Months

Paint booth air balancing has been converted to auto from manual resulting in Energy reduction. Project has a potential of Horizontal deployment in all the factories where cohesive painting is implemented.


Background

In Paint shop all parts after cleaning are passed through a cleaning Tank to remove the deposition of water particles, Huge quantum of compressed air is used to clean the Parts.

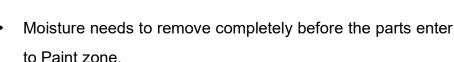
Before (High Pressure Compressed air cleaning)

_	
Area	Tank-2
No of nozzles	40
Pressure in bar	2 – 4
CFM delivered per nozzle	21
Total CFM	840
Total cost in mill	3.30

Process Requirements

Currently high pressure air from centralized compressors

after desiccant driers is being supplied to dry the moisture


Compressor-Desiccant Dryers 💠 High Pressure

Air Zone area

Paint Pre-treatment

present on the parts.

Huge amount of compressed air loss

Energy wastage due to air loss

- Presence of moisture on parts during painting would cause defects in the components which results in production loss.
- The use of compressed air is emphasized by Honda R&D for ensuring zero moisture and dust on the painted parts

Zero moisture on parts to ensure paint quality

Currently, high Pressure air from Centralized Compressors are used for cleaning of parts.

Process Quality Parameters defined for Air Quality						
S. No Parameters Qu		Quality Standard	Protocol			
1	Oil Mist Content, mg/m3 Class 2 : ≤0.1		ISO:8573 (P-2):2007			
2	Dew Point, °C Td	Class 4: +3.0	ISO: 8573 (P-3):1999			
3	Particulate Matter, mg/m3	5.0 Max	ISO: 8573 (P-8): 2004			
4	Particle Size Analysis, particles per m ³	Class 1				
4a	0.3μm <d≤0.5μm< td=""><td>≤20,000</td><td>] ICO + 9E72 (D 4) 2001</td></d≤0.5μm<>	≤20,000] ICO + 9E72 (D 4) 2001			
4b	0.5μm <d≤1.0μm< td=""><td>≤400</td><td colspan="2">ISO: 8573 (P-4) 2001</td></d≤1.0μm<>	≤400	ISO: 8573 (P-4) 2001			
4c	1.0μm <d≤5.0μm< td=""><td>≤10</td><td></td></d≤5.0μm<>	≤10				

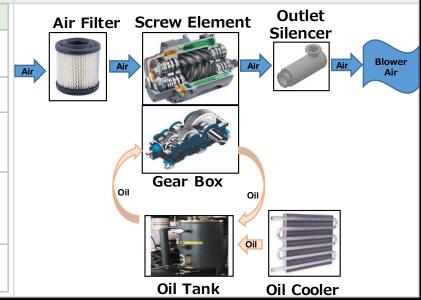
Feasibility Study-Idea Validation

Idea	Pros	Cons	Judge
Use of Decentralized Compressors	Air Consumption reduction	Drier addition required for maintaining dew point	X
Use of alternate drying methods such as hot air	No air requirement. Substantial energy saving	Droplet mark left on parts affecting quality	X
Physical drying methods such as rinsing	Very less energy requirement	Physical part contact not allowed after pre- treatment until final painting is completed	X
ALTERNATE PROCESS Use of Decentralized Blower	Power consumption reduction High flow and low pressure process No dew point issues as pressure is less		√

Currently, high Pressure air from Centralized Compressors are used for cleaning of parts.

Situation Analysis

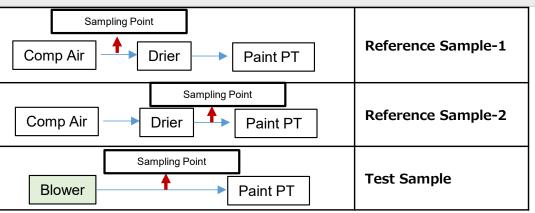
Air Drying is a process that requires high volume and low-pressure air, hence blower can be evaluated as alternative Main area of concerns that needs to be addressed are quality issues due to contamination.


Comparison between types of low-pressure blowers

Type of Blower	Photos	Motor Capacity	Maximum Pressure	Differential pressure	Efficiency	Noise level	MOC of Impeller/screw	KWH/CFM	System installation	Operating cost	Judgement
Centrifugal		Above 3000 CFM available			Not considered-	Required capac	ity is not available in th	is type of blowers	5		X
Rotary lobe (tri lobe)		55 KW (1000CFM)	1.1 bar	0.8 bar	95%	73 dB	Cast Steel	0.055	Medium (Site installation)	0.3575 Rs/CFM	X
Screw		45 KW (1000 CFM)	1.1 bar	0.8 bar	95%	72 dB	Cast Steel	0.045	Easy (Packaged type)	0.2678 Rs/CFM	\checkmark

Advantages	of Air	Blower
Air Communes		

Application	Air Compressor	Air Blower
Cleaning & Drying	Can be the best system if intermittent air bursts required.	Concentrated air flow, able to run continuously at low cost and with energy efficiency.
Blow-off	Ineffective at blow-off for certain industries.	Low pressure, high-velocity air flow suitable for blow-off applications.
Contamination	The cooling process needed to maintain compressed air means some fluid (oil and/or water) is ejected in the airstream, affecting drying applications.	Generates clean air - no air or oil needed in the system, meaning expelled air is dry. Able to create "air curtain" protective barriers.
Moisture regulation	High cost to run continuously, difficult to ensure precision needed for moisture regulation.	Air flow able to be easily directed, to create an "air curtain" laminar air flow that adheres to surfaces, meaning it can remove or regulate moisture on a surface as needed.
Large products	The size and energy requirements needed to deliver air over longer lengths are disproportionately large.	Easily supports large product drying/blow-off/moisture and contamination control.


Air flow in Blower

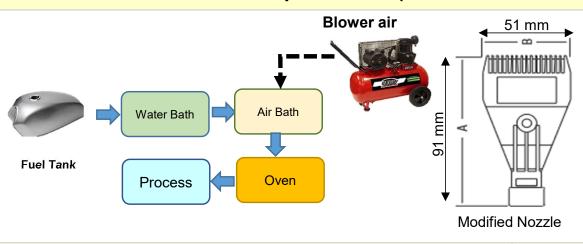
Less Specific Power Consumption for generation of Low-Pressure Air is the key factor for blower selection.

As the product quality was of crucial concern, we obtained permission to conduct trial in one line by installation of one blower.

Trial Set Up

Result

I				
S. No	Parameters	Results	Quality Standard	Protocol
1	Oil Mist Content, mg/m3	<0.01	Class 2 : ≤0.1	ISO:8573 (P-2):2007
2	Dew Point, ^o C Td	+ 1.9	Class 4: +3.0	ISO: 8573 (P-3):1999
3	Particulate Matter, mg/m3	1.0	5.0 Max	ISO: 8573 (P-8): 2004
4	Particle Size Analysis, particles per m ³		Class 1	
4a	0.3μm <d≤0.5μm< td=""><td>4056</td><td>≤20,000</td><td>ISO: 8573 (P-4) 2001</td></d≤0.5μm<>	4056	≤20,000	ISO: 8573 (P-4) 2001
4b	0.5μm <d≤1.0μm< td=""><td>22</td><td>≤400</td><td></td></d≤1.0μm<>	22	≤400	
4c	1.0μm <d≤5.0μm< td=""><td>0</td><td>≤10</td><td></td></d≤5.0μm<>	0	≤10	



Quality confirmation from QC-HO

Less Specific Power Consumption for generation of Low-Pressure Air is the key factor for blower selection.

Proposed Idea (Low Pressure Air Blower for cleaning)

Area	Tank-2
No of nozzles	100
Pressure in bar	0.5 – 1
CFM delivered per nozzle	10
Total CFM	1000
Total operating cost in mill	1.40

Quality Check Certificate from Third Party

Current Process

Centralized Compressor-High Pressure

Decentralized Blower-Low Pressure

- In the current process, High Pressure Centralized Compressor is replaced with Low Pressure Decentralized Blower.
- ❖ Achieved precision moisture regulation.
- Energy reduction achieved through pressure reduction.

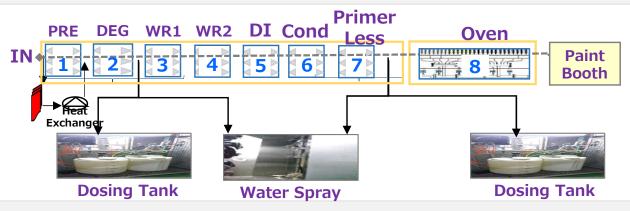
Key Project Highlights

9,60,000 Kwh of electricity

693.12 MT Per Annum

87 Lakhs

63 Lakhs Per Annum



17 Months

Implementation of Decentralized Blower to eliminate the usage of compressed Air to reduce Energy Consumption

In Paint Shop, for Cleaning & Activating the surface of ABS parts, Pre-treatment process is used before painting followed by dry off oven.

Before condition

- Present Pre-treatment process at ABS line is an 8-stage process.
- ❖ A dry off oven is provided at the end to dry the parts. Dry Off Oven operates at 75 deg C
- Present pre-treatment process consumes huge amount of Electricity, LNG and Water.

Process requirements

Pre-Primer Degreasing Rinse Rinse DI Oven Coating Less degrease 33 sec 33 sec 33 sec 77 sec 33 sec 33 sec 56 sec 56 sec Chemical solution cleaning Cleaning with strong alkali Degreasing liquid cleaning

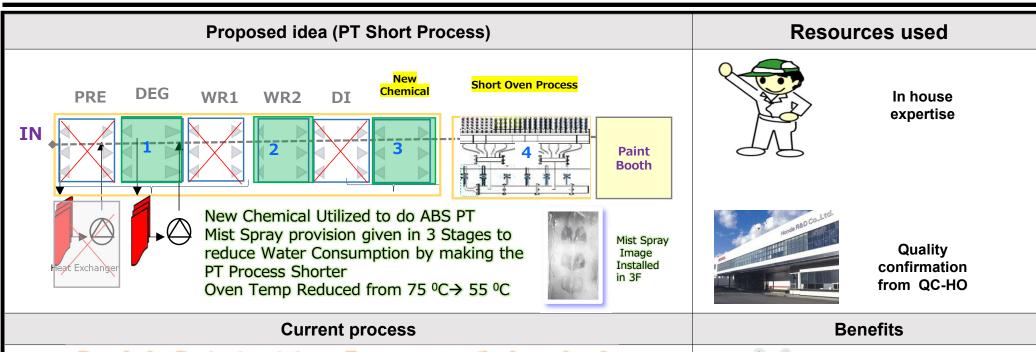
No of stages : 08 Nos

Process Time : 354 Secs

- ❖ To remove oil, Grease and dust from the surface of component by saponification and Emulsification reactions and make the surface clean.
- Water sprayers are used to spray water on surface of part to clean. Water spraying increases the water consumption.
- ❖ To prepare the surface for uniform coating. Part roughness also increases to activate the part surface.

Challenge

Huge amount of Electricity consumption



LNG Consumption is more

High water consuming process

Current pre-treatment process is high energy consuming due to lengthy process

By reducing Pre-treatment stages, Energy consumption has reduced

8 Stage pretreatment process

4 Stage pretreatment process

- In the revised process, mist spray provision given in 3 stage.
- New chemical introduced which will clean the parts effectively with mist spray
- Energy reduction (Electricity and LNG) by reducing no. of stages and reduced drying temperature at oven.

1,92,537 Kwh of electricity

14,166 Kg of LNG

29.6 lakhs/ annum

179 Tons/year

28 Lakhs

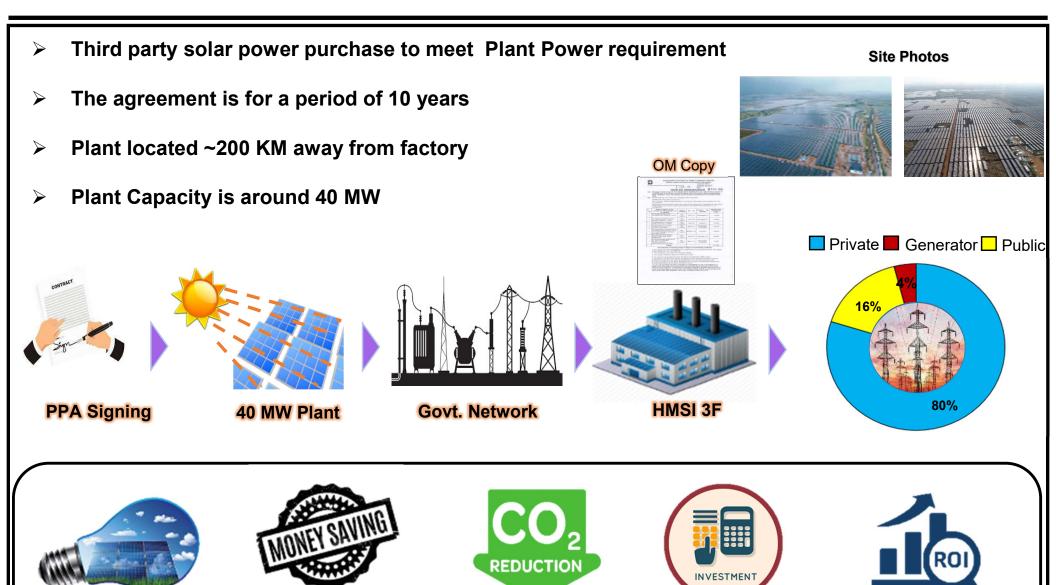

Project is implemented in 1 line and will be Horizontally deployed in all the lines and all the factories of HMSI

Table of Contents

Contents	Slides	Time
Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

-NA-

440 lakh kWh

This is Zero Investment project. Overall 44 Mill kWh per year from solar energy to meet 80% power requirement

37,000 ton/

annum

Zero

1078 Lakh

Rs/year

- 7MW Solar Roof Top Installation done on Factory Roof Top.
- The installation of On site solar power plant was completed in Apr 2019.

Key project highlights

88 lakh kWh

580 lakh Rs/year

8330 ton/annum

315 Mill Rs

7 MW solar rooftop to meet 12% of total electrical requirement

- > 2.5 MW Solar Roof Top Installation done on Factory Roof Top.
- The installation of On-site Rooftop solar power plant is completed on Apr 2022

Key project highlights

29.40 lakh KWH

269 lakh Rs/year

2123 ton/ annum

110.8 Mill Rs

2.5 MW Solar Roof Top Expansion done to increase the in-house generation capacity to 9.5 MW

Wind park

Parameter

Wind Speed

System Loss

Turbine Output

Plant Availability

Wind Probability

(P50 / P75 / P99)

Generation Days /Yr

Wind Turbine Generator 2.7 MW

Grid Line (KPTCL-Govt.)

m/s

kW

%

%

%

Days

User (HMSI-3F)

(2MW)

728

95

5

90

365 5.2

(2.7MW)

1050

95

5

90

365

7.5

Location of Installation

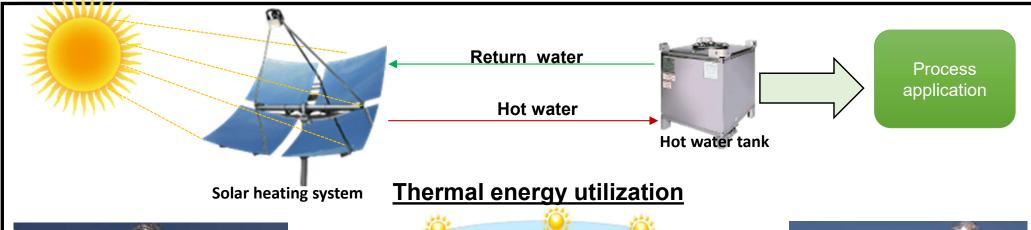
Installation Karnataka MAHARASHTRA Bidar Gulbarga ANDHRA PRADESH Belgaum Raichur Chikmagalur Chikmagalur Chikmagalur Chikmagalur Chikmagalur Tumkuk ARABIAN SEA Manda Bangalore Mandya Bangalore Mandya Bangalore

2.7 MW Wind Turbine

- Installation has been done Outside the Factory at Jagalur, Davanagere (approx. 300kms). Power is being utilized through Wheeling and Banking arrangement with DISCOM.
- The installation of Wind Turbine Generator is completed in the month of Jul-22 Key project highlights

75 lakh KWH

48 lakh Rs/year

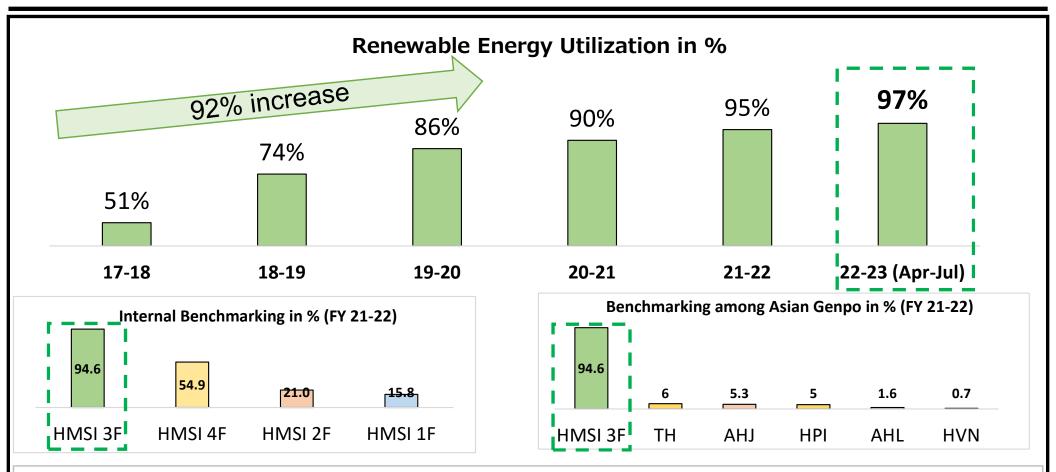

1618 ton/

192 Mill Rs

2.7 MW Windmill turbine installed to increase Renewable Energy Consumption

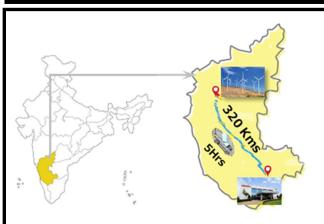
> Total 300 numbers of dishes are installed in the factory, which is been distributed in Four Locations.

Key project highlights



292,000 kg

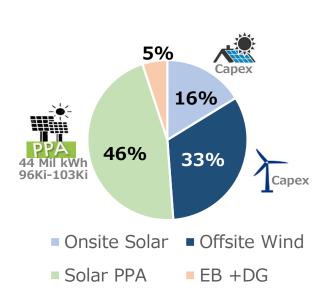
134 Lakh Rs/vear 681,000 kg/annum 280 Lakh Rs/year


25 months

Fuel cost has been reduced by implementing Solar Dishes in Factory

- **≻Total 42 MW of Renewable Energy Capacity**
- ➤ Total capacity to produce 63 Mill kWh per year of green energy
- **➤ Cumulative investment of Rs 645 Mill in Building RE Capacity**
- **Cumulative reduction of 44,000 tons of CO₂**

HMSI-Narsapura is the highest Renewable Energy Utilizing factory in India and Asia region among Honda group companies.



Town: Jagalur
Dist.: Davanagere

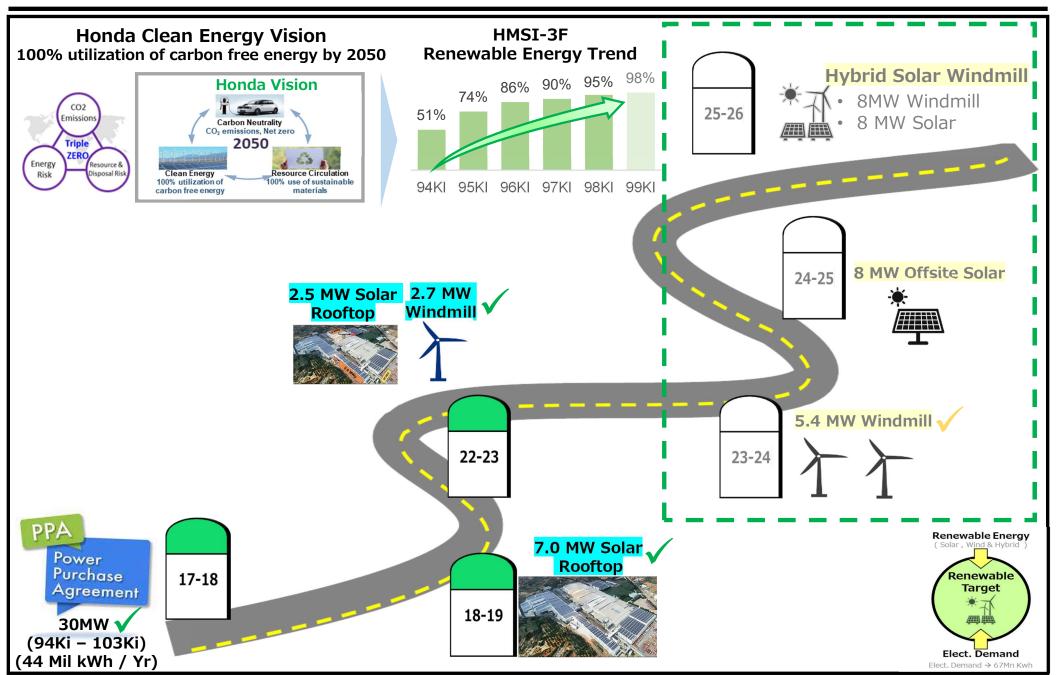
Turbine: GE-2.7MW X 2 Nos **kWh/Yr:** 7.5 Mill kWh/turbine

- Installation will be done Outside the Factory
- The installation of Wind Turbine Generator will be completed in the month of Aug-23 Key project highlights

15 Mill KWH

92 Mill Rs/year

3236 ton/ annum



414 Mill Rs

53 Months

5.4 MW Windmill turbine installation will increase RE generation from Self invested sources

2020 target of substituting 70% energy with RE already achieved Detailed roadmap is chalked out to achieve the target of 100% RE by 2025

Table of Contents

Contents	Slides	Time
Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

Global Direction:

Honda Global Vision Applicable Honda Material Issues

Applicable Sustainable Development Goals

Applicable Green factory Requirement

Green House Gas Mitigation

Policy and Target Setting

- Installation of EC Fans in AHU.
- Installation of blower to replace compressed air

CO₂ emission reduction through Energy Efficiency

Cost Saving	Energy Saving	CO ₂ Reduction
74.48 Mill	11.46 Mill kWh	8560 tons

CO₂ emission reduction through RE

- Expansion of 2.5 MW solar roof top 1. panels.
- Offsite Capex 2.7 MW wind power park installation
- Installation of Solar Roof top panels of 7MW.
- Third party wind power procurement.

Scope 1 & 2 CO2 Emissions, Kg/Veh

CO₂ emission reduction through fuel reduction

vision through planned implementation of RE

Be the benchmark in GHG emissions reduction.

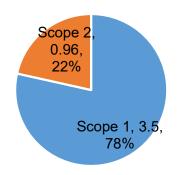
- 1. Implementation of hot water in paint shop to eliminate steam consumption.
- Implementation of VAM for Paint Shop.
- Conversion of Boiler to Hot water generator

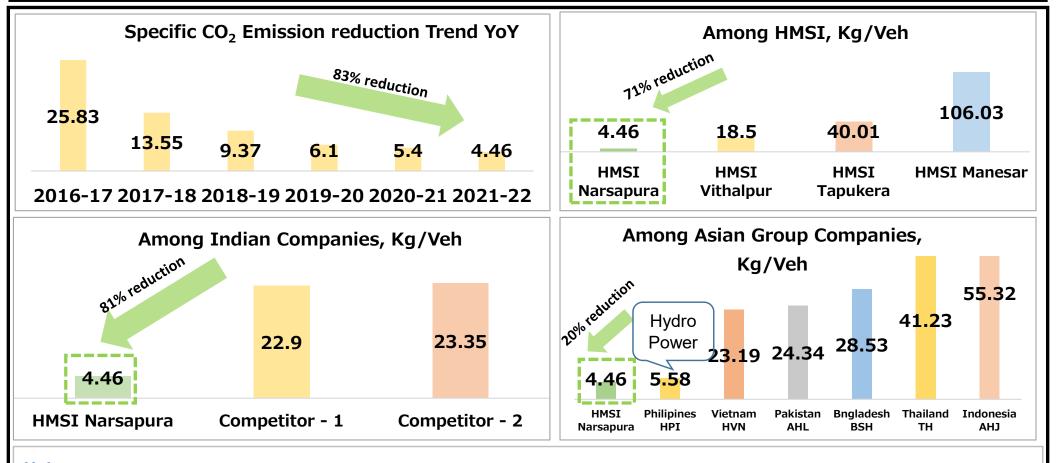
projects.

Cost Saving	Energy Saving	CO ₂ Reduction
58.73 Mill	975 MT of fuel	3506 tons

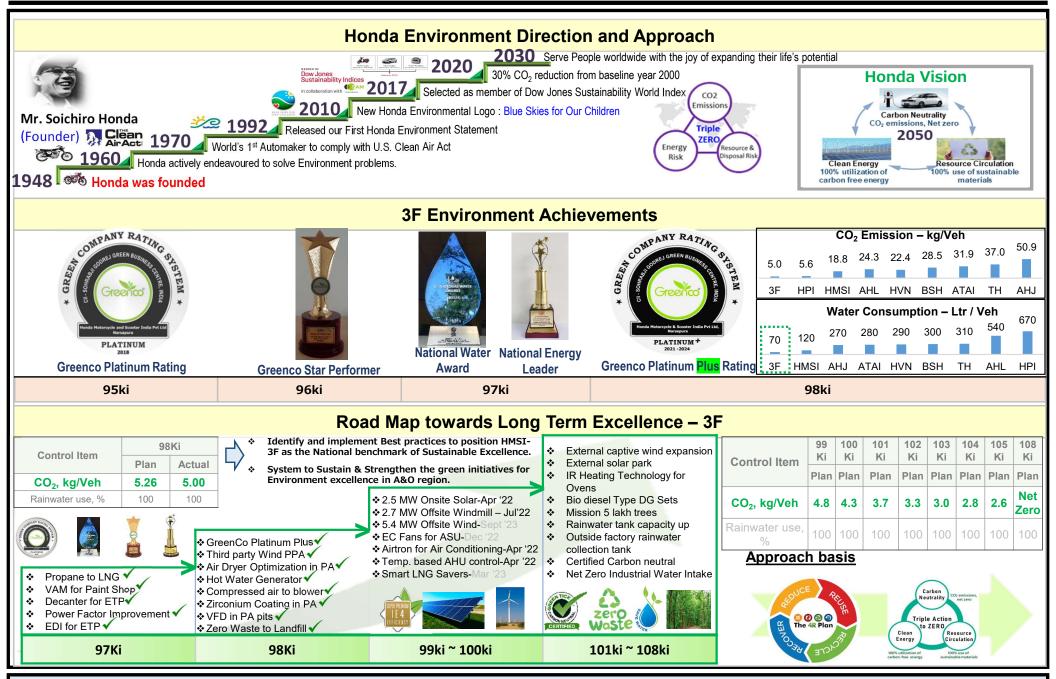
CO₂ emission reduction through transport

- Implementation of RORO Service.
- Implementation of trailer for final product movement.
- 3. Trucks trips reduction through combining small vehicle consignment to big containers




Waste Disposal

Downstream **Transportation**


Through High Renewable Energy Utilization and Energy Efficiency we have achieved benchmark levels in CO₂ emissions. Overall, 3 year reduction by 60%.

Uniqueness

- > One of the first automobile industries in the country which has installed around 300 No's of Solar parabolic dishes.
- > Complete elimination of MEE and ATFD Operation through sequential alternatives.
- > Implementation of Hot water generator to generate Hot water to eliminate boiler
- Lowest specific propane consumption among group companies with similar configuration.
- > One of the lowest specific CO₂ emissions among Asian Group companies.
- Easy to design and maintain and good reliability since last 3years.

HMSI-Narsapura is the lowest CO₂ emission factory in India and Asia region Net Zero target will be realized by 2030

Driven by Honda Vision, 3F has achieved benchmark CO₂ among A&O Genpos. Highest RE Usage. Net Zero CO₂ is aimed to achieve by 108 Ki

Honda Green Purchasing Guidelines

HONDA

Honda Green Purchasing Guidelines

December 2001 – First edition October 2018 – Revised edition

Honda Motor Co., Ltd.

III. Honda Green Purchasing Policy

For Honda, activities to conserve the global environment establish an important pillar in our corporate policies. Our goal is to reduce our environmental footprint through corporate activities

(*1) at every stage in the entire life cycle from resource procurement to design, development, production, transportation, sales, use and disposal stages.

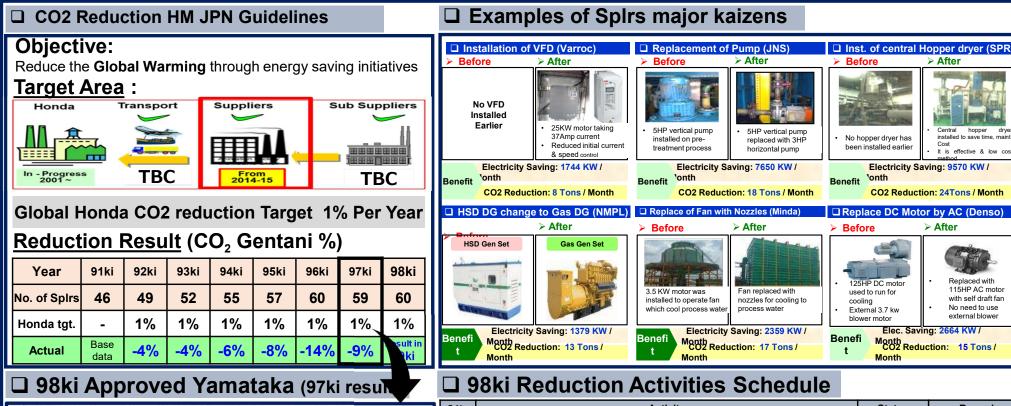
To carry out these activities effectively, we are continuing to take strong measures to reduce our environmental footprint, together with our suppliers. We are also adding E (Environment) to our supplier evaluation categories

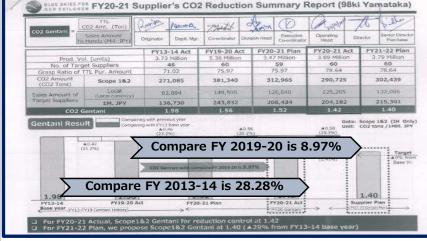
(*2) of Q (Quality), C (Cost), D (Delivery) and D (Development) to allow us to more actively encourage purchasing environmentally friendly parts and materials.

For Honda's environmental initiatives such as GHG emissions reduction, the overall purchasing activities of sharing policies with suppliers and achieving targets together are called Honda Green Purchasing activities.

<Supplement>

These Guidelines cover <u>all suppliers for parts, materials, indirect materials, accessories, service parts and logistics.</u>


Products refer to completed products of motorcycles, automobiles and power products produced by Honda.


Parts and materials refer to parts, materials, indirect materials, accessories, service parts and logistics purchased by Honda.

(*1) Corporate activities cover all activities related to Honda products including not only first-tier but also sub-tier suppliers.

(*2) The result of activities at each supplier in response to these guidelines may be evaluated.

Environment is considered in suppliers' evaluation and suppliers are enforced to cover all activities related to Honda products including not only first-tier but also sub-tier suppliers

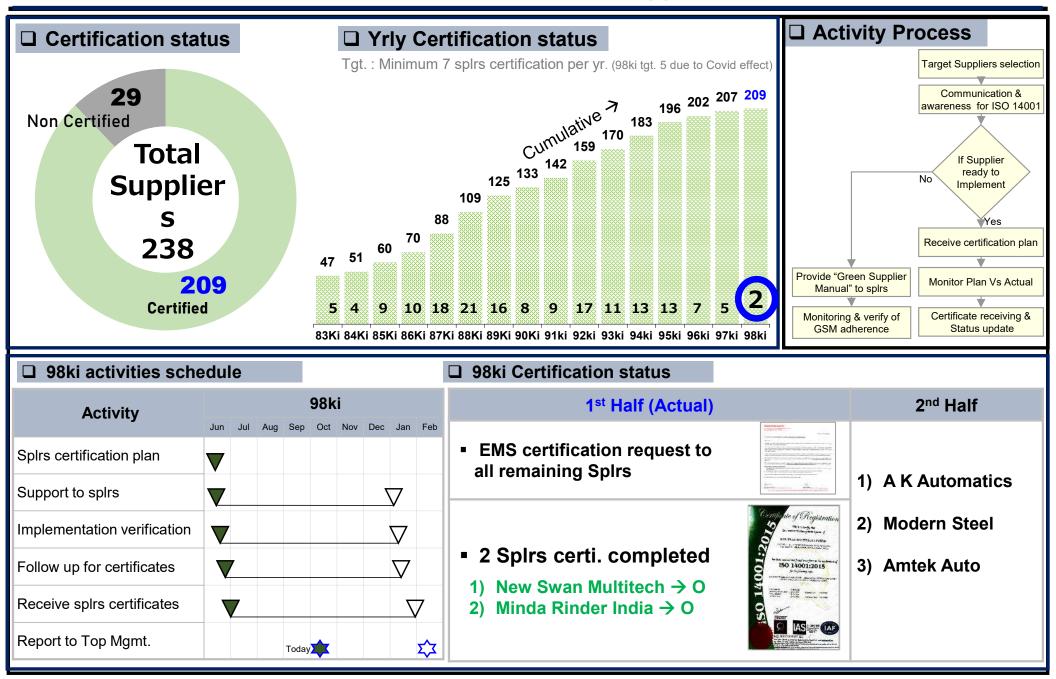
1	S.No	Activity	Status	Remark
	1	 Target Splr identification & discussion with HCIL & HSPP Registration of tgt. Splr in Slim office CO2 reduction target setting based on last year performance 	Completed	60 target splrs selection done based on last year Pur. Amt
	2	 Energy Consumption data collection from 60 Splrs & analysis Collection of Splrs sales amount to Honda -97ki Supplier GHG self assessment Upload data in Slimoffice Portal 	Completed	All the data are uploaded in Slimoffice
	3	98ki CO2 Reduction activities at 60 tgt. Splrs (target Min. 1% with comparison of 97ki) • Monthly energy data monitoring • Horizontal deployment of HMCI mfg. Keizens	U/progress	Kaizen categorization & Monthly Kaizen receiving record
	4	 Horizontal deployment of HMSI mfg. Kaizens Supplier rating for Env. Award during Splr convention Step 1 : Selection of Top 10 suppliers (Tgt. Oct'21) - Done Step 2 : Genba evaluation at the Top 10 splrs & select Best splr 	U/progress	98ki Env. Award

CO₂ Reduction activities are in progress as per ASH / HM Japan Guidelines

☐ ESG yrly activity schedule (96ki - 98ki) - HMSI

1	ki	Major planned activity	Status		
ı		ESG Activity Kick off meeting & ESG guideline distribution			
ı	96ki Activities	ESG Survey start at all suppliers	Done		
ı	Activities	Signed acknowledgement & survey sheet received from Splrs			
ı		ASH Requirement – M/s Goshi Confirmation for ESG, Survey at Goshi			
ı	97ki	ESG Survey Support to Supplier (Goshi India)	Done		
ı	Activities	Goshi ESG Survey sheet check	200		
ı		Final ESG Survey Report Share with ASH			
ı		New Suppliers future survey confirmation – As per ASH			
l		ASH Requirement – Goshi reconfirmation for ESG, Re-Survey at Goshi			
ı		ESG Survey remote Genba Kick Off confirmation	Done provey in 96ki		
ı		ESG Survey at all newly added suppliers after the 1 st Survey in 96ki			
ı	98ki	Kick off b/w ASH and HMSI - Plan (5th Oct'21)			
ı	Activities	Kick off b/w HMSI & Goshi			
		HMSI remote Genba preparation support & check meeting			
		Remote Genba at Goshi (By HMSI, ASH, HM Japan) - 8th & 15th Dec'21			
		ESG self survey at – Mushasi India	Done		
ı		98ki ESG report share meeting with ASH			

☐ ESG Audit long term plan (MCPP PUR – ASH


		Child C	ompanies		Affiliate Companies					
	95Ki	96Ki	97Ki	98Ki	99Ki	100Ki	101Ki	102Ki	(Company)	
Operation	GO A	Audit	GO+RO		RO Audit		LO	Audit	TTL	
Flow					Create ESG Manual	Implement -	ansfer to LO			
HVN 🕡			GOSHI HONDALOCK		FCC	SHOWA	KEIHIN MUSASHI	ATSUMITEC NISSIN TANAKA	9	
нрі 🍃				GOSHI		NISSIN	FCC	40	3	
HMSI 💿				GOSHI	MUSASHI	KEIHIN	FCC NISSIN	SHOWA TS TECH	7	
тн 🍵	GOSHI				MUSASHI	KEIHIN FCC	NISSIN SHOWA	ATSUMITEC THAI YANAGAWA YANAGAWA TECH	9	
анм 🔴						MUSASHI	KEIHIN SHOWA	FCC NISSIN	5	
BSH 👜							KEIHIN		1	
TTL	1	27.0	2	2	3	6	10	10	34	

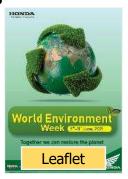
☐ ESG Survey points

	Large item	Small item
1	All-CSR	All CSR activity
	Safety/	Ensuring Safety of
2	Quality	products/services and
	Quality	quality governance
		Discrimination elimination
		Human rights respect
		Prohibition of child/forced
3	Human	labor
)	rights	Wage
	/Labor	Working hour
		Communication with employee
		Safe/Healthy labor environ.
		Handling of conflict mineral
		Environmental management
		GHG emission reduction
4	Environ.	Environ. Preservation of air/water/soil, etc.
		Resource saving/Waste reduction
_		Chemical substance management

Large item	Small item
	Regulation compliance
	Competition Law
	Corruption prevention
(5)	Confidential info. protection
Compliance	Export trade control
	Intellectual property
	protection
_	Conflict of interests
6 Info. disclosure	Info. disclosure to stakeholder
70utside company	Roll-out to Gr. company/supplier

Target Splr - Goshi remote genba by HM JPN, ASH & HMSI is planned in 8th & 15th Dec'21 FY 2021-22 ESG activity is under progress as per schedule & ASH guidelines

All the activities are under progress as per plan


World Environment Week

Theme for World environment 2021 is 'Ecosystem Restoration'.

World environment week is celebrated from 5th June- 11th June.

HMSI actions

Objective

- 1. To encourage awareness and action for the protection of environment
- To utilize world environment week for customer and society connect
- 3. Brand positioning along with building customer confidence

Dealer actions

30 trees planted by dealer associates

Environment week 5th-11th Jun'21, celebrated by dealers. 754 No.s of dealers participated in the celebration

Web based awareness organized by HMSI

Green Consumer day Tea Shirt wearing & Sapling Distribution at Meenakshi Honda

Green Consumer day, celebrated by dealers. 622 No.s of Dealers participated in celebration

Table of Contents

	Contents	Slides	Time
01	Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
02	Energy data Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking	4-8	1 min
03	Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
04	Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
05	Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
06	GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
07	Major Improvements, Review Mechanism, Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
08	Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

Background

BEE Recognized Third Party Energy Audit conducted at HMSI to ensure all the high energy intensive equipment are working efficiently

Efficiency checking of Air Compressors

- HMSI Narsapura is equipped with 16 No.s of Air Compressors of KAESER make.
- Elaborate measurement carried out to determine performance of equipment.

Audit results:

Comp	1	2	3	4	5	6	7	8	9
Std KW/CFM	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Actual KW/CFM	0.15	0.15	0.15	0.15	0.15	0.14	0.14	0.14	0.14
Remark	ок								

All the compressor efficiency are calculated and found out all the compressors are most efficient.

Compressed Air Leakage Test:

Compressed air leakage test conducted at shop floor during nonproduction day.

Compressed air leakage is at 5.6%

Efficiency checking of Boilers

Audit results:

•	HMSI Narsapura is equipped with 8
	No.s of Boilers to generate steam to
	use in process.

Efficiency of the Boiler carried out by Indirect method by measuring various heat losses.

Boiler	1	2	3	4
Std Vol Eff %	84	84	84	84
Actual Vol Eff %	84.9	84.6	85.2	84.8
Remark	ок	ок	ок	ок

	Boiler	1	2	3	4
	Std CO ppm	<100	<100	<100	<100
	Actual Vol Eff %	NIL	NIL	NIL	NIL
1	Remark	ок	ОК	ОК	ОК

Efficiency checking of Pumps

Audit results:

All the pumps are equipped with VFD to save energy

 Pumps related to Paint shop, Air Supply Unit and Sludge Pit circulation pumps were checked during audit.

Found out that all the High energy intensive equipment are working efficiently and compressed air leakage is also under control

Background

Modifications in machines are being carries out at production body through utilization of In-house maintenance associates for activities such as M,S,Q,C,D Improvements

EC Fans Installation

L4 Sludge Pit Panel & AB4 Mixing room VFD Installation

Situation Analysis:

ASU EC Fans Installation to Save 320 Units/Day savings at SPC2 & CC

Situation Analysis:

L4 Sludge Pit Panel & AB3 Mixing Room Exhaust fan VFD Installation to save 25 Units/Day Savings

Before

SPC 2 ASU Clear Coat ASU

V Belt Induction Motor

Equip	Before							
Equip Description /Location	KW	Freq (Hz)	Voltage (V)	Current (I)				
SPC2 ASU MOTOR	160.00	40	411.00	27.00	18835.60	18.84		
CC ASU MOTOR	75.00	40	421.00	27.00	18900.14	18.90		

After

EC Fan Controller
26 nos
Fan installed

Equip			A	fter		
Equip Description /Location	Freq (Hz)	Qty Set	Voltage (V)	Current (I)	B: Power (W) - V x I*1.73	KWH
C2 ASU MOTOR	37.50	26	416.00	14.87	10071.17	10.07
C ASU MOTOR	38.50	10	420.00	13.45	9490.55	9.49

Before

MAIN SU	PPLY
---------	------

Power Flow

L+ Siu	uge
Pumps Qty	6
Load KWH	224

AB4 Mix room

62.9

LA Cludas

MCB

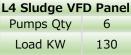
CONTACTOR	

OR	Fans Qty
	Load KWH
$\overline{}$	/DAY

FAN MOTOR

Power Flow

MAIN SUPPLY	MAIN	SUPPLY
-------------	------	--------



FAN MOTOR

86400 kWh/annum

62.39 tons/Annum

15 Mill

454150 kWh/annum

327.889 tons/Annum

1.8 Mill

Continuous energy efficiency are initiatives taken to reduce CO2 Emission

Temperature Sensor for AHU

AHU's run irrespective of temperature inside the shop floor.

Controller Temperature Sensor Process Area

Temperature sensors installed in shop floor.

After

Benefits

VESTMENT
2.5 Mill
kWh/annum

122.74 tons

❖ Temperature sensors are installed inside shop floor which sends signal to the controller at AHU. Controller then optimizes working of AHU.

VFD installation in ABS line Exhaust fan for booth balancing

To veloce 0.4 M draft, suppl and exhau Exha Exha runnii irresp

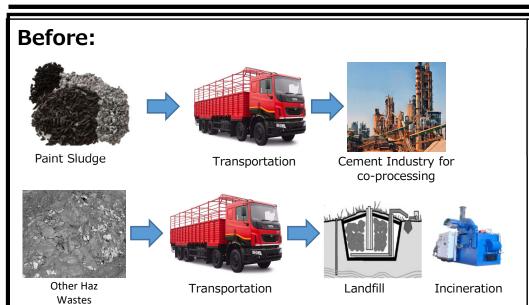
To maintain air velocity of 0.3 to 0.4 M/sec & down draft, ASU supplies filtered air and same air is exhausted by Exhaust fan. Exhaust fan will be running irrespective of the load in booth.

To optimize the running of Exhaust when the fan booth is non operational or on less load, VFD is installed. Which in turn reduce electrical energy consumption.

Benefits

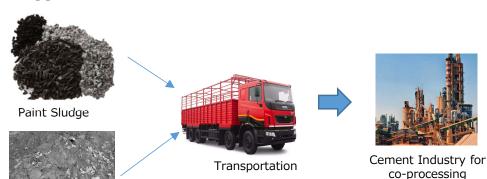
INVESTMENT 0.05 Mill

20000



14440

kWh/annum Kg/annum ired to maintain booth balancing


- Exhaust fan is required to maintain booth balancing.
- Exhaust fan used to run at full load even though the booth load was less.
- ❖ VFD is installed to optimize the running of Exhaust fan based on the booth load.

Continuous energy efficiency are initiatives taken to reduce Utility cost

- > Only Paint sludge was being sent to coprocessing and other hazardous waste were sent either to landfill or incineration.
- > Due to constraint in authorization, only paint sludge was being sent to co-processing

After:

Other Haz Wastes

- Authorization has been amended for coprocessing of all Hazardous waste.
- Contract has been made with cement industry for disposal of all Hazardous waste with effect from 01.12.2021

Benefit:

724.87 MT of Waste Utilized as fuel in cement industry

1972 MT of Co2 Emission reduction

2579 Kcal of energy generated from the waste

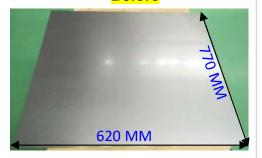
0.8 Mill / Annum

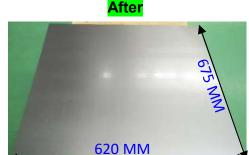
Smart AC controller has been installed to ensure energy reduction during AC operation

Decanter for Sludge Drying

Before

Filter Press for Sludge Handling


After


Decanter for Sludge Handling

Blank Size Reduction in Sheet Metal

Before

Size: 0.8 X 620 X 685 MM

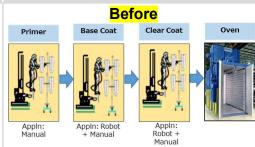
Size: 0.8 X 620 X 675

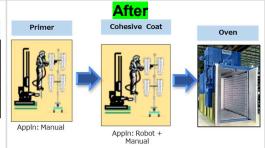
Polythene usage elimination in clutch Assy part

Before

Poly cover weight / K1E clutch Assy part – 0.008 Kg

K1E clutch Assy part received with Polythene cover


After


Poly cover for clutch Assy part eliminated.

K1E clutch Assy part Polythene Eliminated

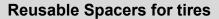
Implementation of Cohesive Painting Technology

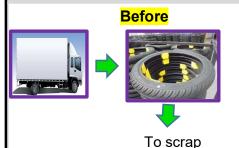
2 Coat Painting of components

Cohesive Painting technology

4331.32 MT/Annum waste reduced

1524.1 Lakhs/ Annum




429.5 Lakhs

3.5 Months

3R principle adopted to reduce Waste generation

Spacers from suppliers used to scrap at HMSI

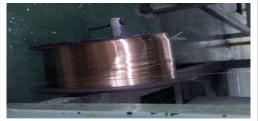
After Return to Supplier

Spacers now being collected and returned to suppliers

Fr & Rr Cushion Polythene cover reuse

Polythene cover of Cushion used to scrap at HMSI

Polythene covers of Cushion now being sent to supplier


Reuse of 0.8 mm wire spool in manual welding

Before

1.6 mm Brazing rod used on robot welding

After

0.8 mm wire spool from robot welding is reused in manual welding

Implementation of Solvent recovery System

Waste thinner from PA used to sent to recycler

Waste thinner is being reused in the system

350.6 MT/Annum waste reused

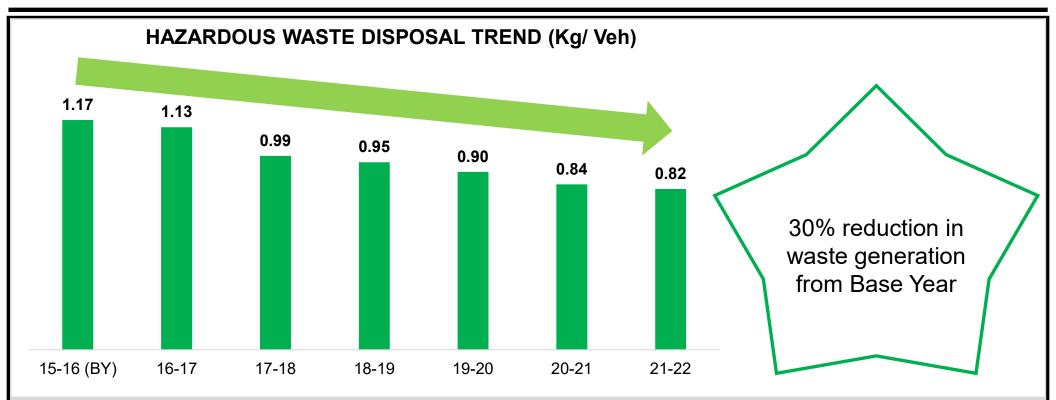
294.16 Lakhs/ Annum

65 Lakhs

NA

3R principle adopted to reuse Waste generation

10169.99 MT/Annum waste recycled


4365.13 Lakhs/ Annum

29 Lakhs

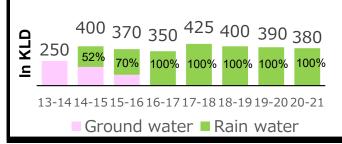
NA

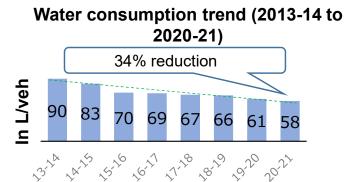
Major initiatives to reduce Waste Generation

- 1. Zirconium coating in pre-treatment to reduce Phosphate sludge generation.
- 2. EDRO in Paint shop to reduce Paint sludge reduction.
- 3. Recycling of Decal liners instead of incineration.
- 4. Installation of Solvent Recovery System to recover used thinner.
- 5. Installation of Decanter to reduce ETP and STP sludge generation.
- 6. Recycling of Gum covers instead of Incineration.
- 7. Reduction in size of old dhoti to reduce Oil Soaked cotton Waste.
- 8. Implementation of Cohesive Painting technology to reduce paint sludge.
- 9. Implementation of washing machine to reduce Oil Soaked cotton Waste.
- 10.Co-processing of Hazardous Waste at Cement Industry.

Achievement-100% Water consumption through rainwater usage

- Tank 1

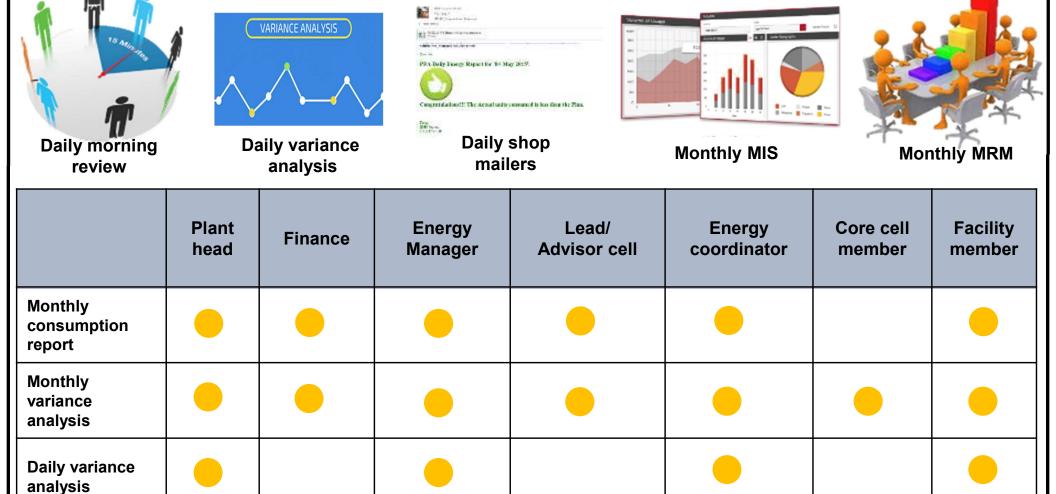

 24 Million Litre
 closed tank
- Tank 2


 28 Million Littre
 open tank
- Tank 3

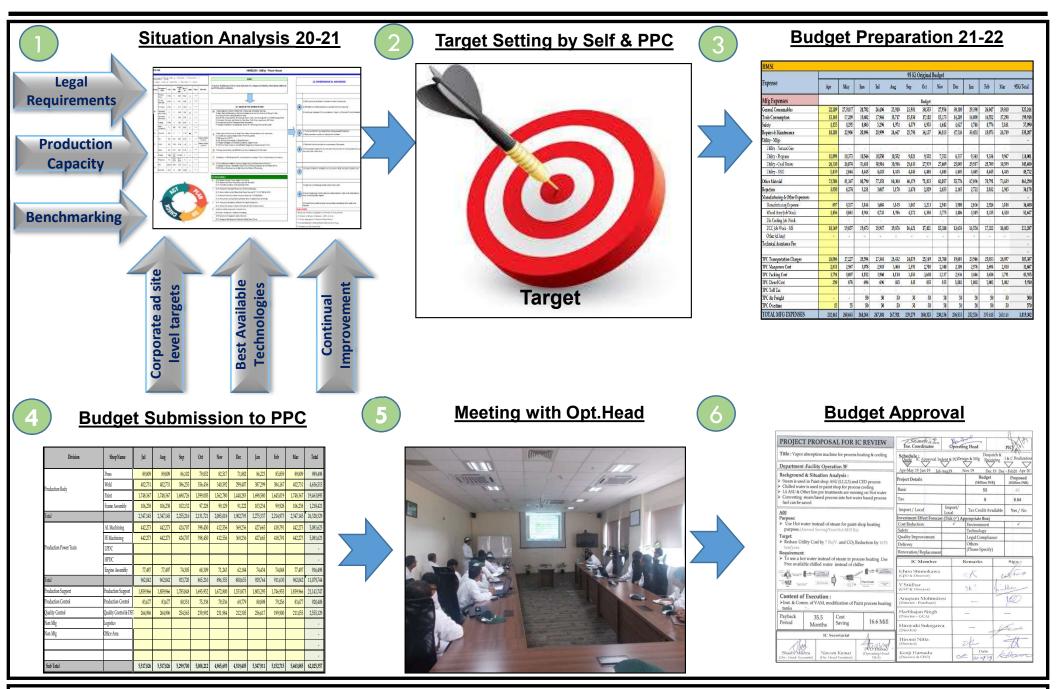
 38 Million-Litre
 closed tank

- Kolar is situated in an area of acute water scarcity
- ❖ 100% factory operation by Rainwater storage and re-utilization
- Three Rainwater tanks with capacity of 80 Mill. Ltr capable to meet 6 months water requirement
- Zero Liquid discharge factory

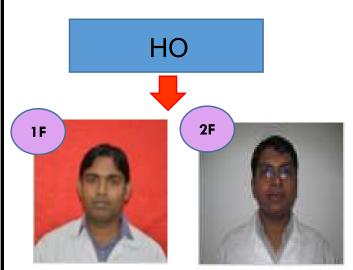
Rainwater usage trend (2013-14 to 2020-21)



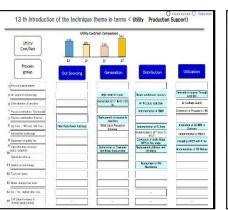
Since last five years 100% water requirement for the factory is met only through Rainwater.


Model factory for water self sustenance

Daily shop consumption


Board review

Comprehensive review mechanism in place for energy consumption



Target Setting is done and it is been approved by Board of directors

Synergy Meeting Cost Down Initiatives

Themes Discussion

Feasibility Study

		Societa	ast			Ã,	platar	бабаныя		Solvering		Deliver	
×	Att	Secupso	megli/el	Oregon (Elyespoths)	Reg	wi	1660	66	orid	166	104	OBSAN	
1	Nec	November Broad Recease to relate on speciment land	311	Og Dag / Whater Cit. Con J	Andricker Visitor Topologic streticue	0	0,		×	ж	302	. 46	
	Monday	Accident discussion prosests Al (with righting	31	american	restricter	0,			80	81	п	85	
1	fac	implementationed Satural Signal Signal	23	Code / Theorets, Early	Ngc# So	0,	0,	0,	18	ω	125	111	
4	Gelfer	Micro-Bertrapperichistates	25	Decial procuring	Architect Vactori	0	0,	0		41	44.	62	
1	Congressor	Degraphylistalingsrol promiser rathgrey project at hous	31.0	igneticess poemiastreadin	Présise	0,	0	0	82	47	v	- 24	
		nom ipidolosenymole depentur	21	Code / White (O) de	Problèm	0,	0	0	14	244	p.44	18	
	interne	backs artific larigiser in	23	Alandorednosy	PandaSar	0,			12	25	0.25	14	
ı	Corpesor	Node Feet namely in Despitator	13	(spettern) poemiestrekste	Paviliation	0,	0	Ď	3	g	п	4.00	
	Natr	temperaturiny education by whiteen and oil	31	Relatoraterity	Nepol Ser	0,			131	225	021	10	
±	Ferida	Eghterhäut K Ministr	21.	Acostor Schedigg	Vjetav	0,		0	ik	181	.081	14	
22	ote	Charge pid GCC (et vid) 1034	41,	to over telebity as	timer br/ligeste	0		0,			0.60	tx	
		Total	27.7									59.34	

Energy Representative Energy Representative

Energy Representative Energy Representative

Applicable Themes

Summary of Themes

Sino Area		Description	cost		Feas	ibility	
SH INC	Arts	DESCRIPTION	swing(Rs/veh)	15	25	37	4
1	Plant	Implementation of Geothermal Technology	Under Study	0	0		0
2	SoileyHPDC	Implementation of VAM	Under Study	0	0		0
3	Power	Coversion of 11 Kv to 150 Kv	UnderStudy		0		
4	AHU	Implementation of EC fans for AHU Blowers	UnderStudy	0	0	0	0
s	Coolingtower	Replacement of Cooling Tower Fan Blade	Under Study	0	0	0	0
6	Machine Shop	Replacement of Heaters in Washing Machine by Hot Water	Under Study	0	0	0	0
7	STP	Implementation of I rilube Blower with IE3 Motors	Under Study	0			
8	STP	Introduction of FBBR Technology	Under Study				
9	Chiller	Interconnection of ED & Weld Chiller	Under Study			0	
10	CTP	To Change TheCTP Blower with IE3	Under Study			0	
11	WTP	Replacement of Membrane to increase the Efficiency	Under Study			0	
12		Chemical cost Optimization	UnderStudy	0	0		0
13	ZLD	Conversion of single stage MFF to Two Stage	Under Study		0		
14		NO Efficiency Increase	Under Study			0	
15	PA PA	Power generation Through Water Turbine (Studge Pit)	UnderStudy	0	0	0	0

Final Submission

Fathery	āra								-						
Al Factores	(th	1	ednolo	or/	Intro	Introduction Time		DWT Effect Prospects					Brayes		
				"				Narp	we Se	ng .		Start			
Processynap	Thene	iner	2017	Vill	990	950	鄉	ж	990	X.	渊	550	560	Plan	line
Hestolic estimacy	Mistary				1						B	16	15		
Holide tability	Configuration string comproducts have				4		П	П			07	17	1.7		Г
Prices antente Prose	Explorer: of proper of a relation					1						46	4,6		
Spiced (1Pand St. On)	Indisty for landas				1			П			32	152	152		
iş del (Peel (S. Or)	DGE cled Ropecy harese				3						644	644	84		
(s, Cell /19 cell (S), Cer (intigetion of AC SIS in Contem	П			1						181	031	3.0		Г
Acontor Schooly	independency scores of each				3						01	11	0.1		
Spiemer ten keller lite	Danking Applicant		Ē				i				Ī		9.95		
igh elicinic, prospilate palicio	De Aver Brand Str				4						(33	033	933		
igierikano, prosuvuskenkon	GV not it is not benefin				4	1					815	615	0.15		
(is ded /1/Parel (is der)	Modernaliya				4	4					14	4.23	423		

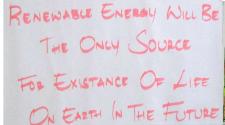
Cost Down Initiatives are discussed among all four Plants & data is shared till Directors

Kaizen is a part of our daily work routine

PURPOSE OF ENERGY WEEK CELEBRATION

- 1. To create awareness among associates and suppliers about energy conservation.
- 2. To create awareness about switching to renewable energy from nonrenewable energy.

GLIMPSES OF ENERGY WEEK CELEBRATION



SI. No	Activity	21-Feb	22-Feb	23-Feb	24-Feb	25-Fel
1	Energy week banner display at all gates	∇			20155	
2	Poster competition - Associate	∇				∇
3	Poster competition - Family	∇				∇
4	Slogan Competition - Kannada	∇				∇
5	Slogan Competition - English	∇				∇
6	Energy Conservation Model	∇				∇
7	Energy conservation commitment by signing on banner			∇		
8	Quiz competition			∇		
9	Information sharing in canteen on Energy conservation				∇	
10	Associate Commitment towards Energy conservation	∇				∇

3F has continually endeavored to keep its momentum towards sustainability Along this way came many awards & recognitions

Awards and recognitions by State and national level bodies

- First factory in Honda India Group to achieve "Greenco" rating
- First Manufacturing facility in Karnataka to achieve Platinum rating
- National best in Waste management and Innovation

Project details	98	KI	99	Ki
r roject details	Q 1-2	Q3-4	Q 1-2	Q3-4
Zero land fill facility		~		
Additional 2.5MW roof top PV		~		
2.7 MW Windmill installation			~	
ASU hot water conversion project			abla	

2018-2019

2019-2020

2022-2023

3F will continue its journey toward implementing more Environmentally sustainable projects which is having very good financial viability also

GreenCo Platinum Plus Rating - 3F

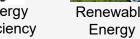
GreenCo is a Green Factory Rating System developed by Confederation of Indian Industry (CII) that critically evaluates all the Environmental Performance Parameters of a factory and provides rating for benchmark performance

HMSI 3F has reflected outstanding performance across 10 Environment Performance Indices & 9 Green Requirements to achieve Top most rating (Platinum Plus) establishing itself as the benchmark in Sustainable Environmental Excellence

Water

Waste

Life Cycle



Material Product Stewardship Conservation

Green Supply Chain

Energy Efficiency

Conservation

Green House Gas Emission

Management

Innovation

Assessment

Assessment conducted on 30th Nov & 01st Dec. 21

Platinum Plus is the highest possible GreenCo rating, and it requires Benchmark performance to be demonstrated across 10 Performance Parameters, 3 mandatory requirements & 6 specific requirements.

First Automobile Company in India to be awarded with Platinum Plus Rating

- First company across all sectors in Karnataka to get Platinum Plus rating
- National Best Scores in Energy Management, Green House Gas Emissions and Innovation
- Fastest Company in India to transition from Platinum to Platinum Plus

Benefits through GreenCo:

Energy Saving CO₂ Reduction Water Reduction

12.65 Lakh kWh/Yr 3418 MT/Yr

6086 KL/Yr

HMSI 3F is the First and Only Automobile Company in India to be awarded with GreenCo **Platinum Plus Rating by CII**

Background

CII Annually conducts events to showcase industries best practices in Energy Management, Environment, Water Management and Waste Management.

Learnings from CII Events

Project Name	Solar Dish	WHE	Sludge Dryer	VAM with out cooling tower	Airtron
CII Event Name	National Energy Excellence Awards summit	Environment Excellence Award summit	Environment Excellence Award summit	Greenco Summit	National Energy Excellence Awards summit
Investments	INR 28 Mill	INR 25 Mill	INR 3 Mill	INR 49 Mill	INR 2.1 Mill
Cost Benefit	INR 13.4 Mill	INR 10 Mill	INR 5.5 Mill	INR 16.3 Mill	INR 1.1 Mill
Energy saving	292 tons of fuel	204 tons of fuel	109 tons of fuel	11 Lakh kWh & 301 tons of fuel	1.65 Lakh kWh
CO2 saving	681 tons of CO2	607 tons of CO2	317 tons of CO2	1690 ton of CO2	123 tons of CO2
Water savings	-	3336 KL/Annum	1100 KL/Annum	1650 KL/Annum	-

Savings achieved from the Learnings

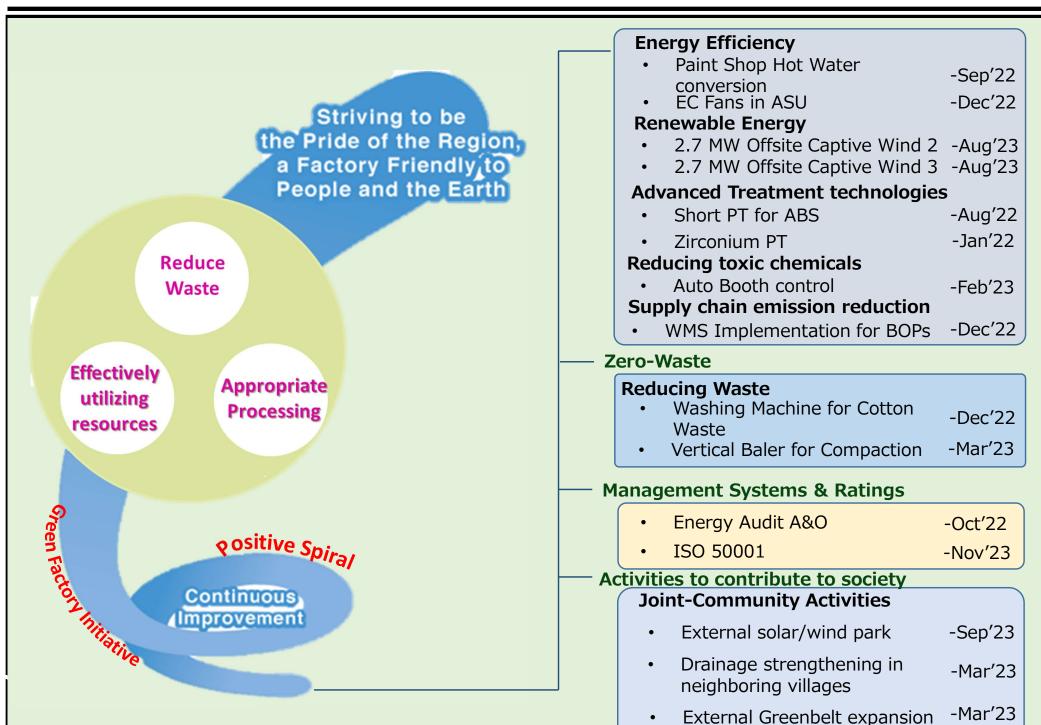
12.65 Lakh kWh/Annum

6086 KL / Annum

3418 Tons / Annum

906 Tons / Annum of fuel

46.3 Mill / Annum


107.1 Mill

HMSI has gained Environmental and Economical benefits through the Learnings from CII

Annual Events

Table of Contents

	Contents	Slides	Time
01	Introduction & Energy Management Honda Global and HMSI presence, Honda's Environment journey, Honda's Commitment for Energy Excellence, Honda Motor's 2030 vision, HMSI Policies	1-3	1 min
02	Energy data Energy Resources Cassific Fuel Cassumption Internal and National Reachmarking	4-8	1 min
03	Energy Resources, Specific Fuel Consumption, Internal and National Benchmarking Encon Projects Zero Investment Encon Projects and Other Encon Projects	9-10	1 min
04	Innovative Ideas Auto Booth Air Balancing, Compressed air replacement with Blower and PT Short Process in Paint Shop	11-20	5 min
05	Renewable & Green Energy Renewable energy usage in Narsapura Plant, Renewable energy projects	21-28	2 min
06	GHG Emissions, Green Supply Chain and Capacity Building GHG Benchmarking, Supplier EMS Certification, Green Dealer development, Supplier and dealer awareness	29-37	2 min
07	Improvements, Review Mechanism Employee Engagement Major Improvement themes, Performance review mechanism, employee engagement events	38-54	3 min
08	Way Forward Positive Spiral, Long terms energy and Environment Improvements	55	2 min

It is in our hand to protect our beautiful earth

Contact Details: Sriram Karikkat

Ph. No: 9606011715, E Mail: sriram.karikkat@honda2wheelersindia.com